
TransSECS for an
OPCUA Server

Using Servers TransSECS to Create an
OPCUA SECS/GEM Tool Interface

Installing TransSECS

Double click on the installer and click Next when
prompted. Once installed, start the TransSECS Builder
application (MIStudioSuite/TransSECS/Builder/TransSECS.exe)

The example GEMTool will be loaded when you start the
TransSECS Builder

The tool interface
defaults to running on
port 5010 (HSMS)

and Device ID 1

Select the type of server for deployment

TransSECS Servers has
several deployment
options. The default is
OPCUA. Be sure it is
always selected while
you work on the project.

Press the Hammer/Star button to build the project

When the "Compilation" popup closes the build is complete.
This may take a minute or so.

TransSECS has many features
which are described in the
documentation, but for this
demonstration, just building the
sample is sufficient.

After the code is generated the server code for the tool will be
in the Projects/GEMTool/OPCUA directory.

Everything you need to run on
Windows is in this directory. For
Linux systems you will need install
rxtxSerial on the system and
make appropriate changes to the
run.sh file.

You may need to edit the path to
the jre in run.bat if you move the
deployment location.

Run the server with the run.bat file.

Run the SECS/GEM Interface as an OPCUA Server

When you run the generated
run.bat, the tool's SECS/GEM will
be running on Port 5010 and
Device ID 1 as an OPCUA server.

Run the SECS/GEM Interface as an OPCUA Server

The SECS/GEM OPCUA Server endpoint URL is
opc.tcp://127.0.0.1:12686/MIXOPCServer

Test the SECS/GEM Interface with TransSECS GEMHost
using TransSECSTest.exe

This starts TransSECS with the GEMHost project which runs
as a Host to test the tool interface.

Note: If the ExtendedHost is loaded when TransSECSTest is
started, use the File menu to load the GEMHost project.

Run TransSECS as a test host

After the Host is built it will run and
automatically connect to the
GEMTool and set up event reports
and enable alarms

Set to LIVE mode before
building the GEMHost
project

Build with the Hammer/
Star button

Run TransSECS Test as a host

Messages sent and received will be
shown in the Messages panel
(when a message is selected)

This arrow shows that
the host is running

Select a primary
(outgoing) message and
Press "Send Message"
button to send it

Send an S1F3 test message to the tool

Press the Send Message button to
send the message to the tool

Select the S1F3
Message.

Change the SVID you
want to request

The sent message and its reply will appear
in the Message Panel

The S1F4 reply

The S1F3 message

Test an OPCUA Client Connection

This example will use the UAExpert Reference Client to test the
OPCUA SECS/GEM Server.

The steps are basically the same for any OPCUA Client:

1) Run the OPCUA Client

2) configure a connection to the SECS/GEM OPCUA Server

3) connect to the SECS/GEM OPCUA Server

4) resolve security certificate issues

https://www.unified-automation.com/products/development-tools/uaexpert.html

https://www.unified-automation.com/products/development-tools/uaexpert.html

Start UAExpert and Add a new OPCUA Server
Right Click on the
Servers node to add a
new OPCUA server
connection

Configure the Server in UAExpert Name the OPCUA
Server connection

Enter the Endpoint
URL for the
SECS/GEM OPCUA
Server

Select the Security
Policy and Message
Security Mode. All
choices, including
NONE is valid for the
SECS/GEM OPCUA
Server.

Connect to the OPCUA Server

Right Click on the
newly added server to
select "Connect"

OPCUA Certificates

A generated server certificate for
the OPCUA client to import.

Folder where client
certificates will be
placed

OPCUA requires certificates for authentication. Note:
No certificate is required for the security policy
NONE and message security mode NONE in the
client setup.

UAExpert Certificate Exchange

For UAExpert, this certificate can be
trusted by using the "Trust Server
Certificate" button. For other clients,
read the documentation for a similar
procedure to install and trust the
certificate.

During the first connection to the
OPCUA Server the server's security
certificate will be imported by
UAExpert.

The certificate has been imported but
is not trusted.

UAExpert Certificate Exchange

The SECS/GEM OPCUA Server
certificate is now installed for
UAExpert and is trusted.

UAExpert Certificate Exchange

Security checks failed.

There is one more certificate related
step before the server connection can
be made. The client has given the
server its own certificate but it is not
yet trusted by the SECS/GEM OPCUA
Server.

OPCUA Certificate Exchange

The untrusted client certificate is in
the OPCUA server "security"
directory under "rejected"

The UAExpert client certificate has been installed in the OPCUA server directory
as "rejected" because it needs approval to be trusted. Browse to the OPCUA
server security "rejected" folder to find this certificate.

Move this certificate to the "trusted" subdirectory of
the OPCUA server security folder.

Note: Make sure you move (copy/delete) the certificate from
the rejected, do not leave the certificate in "rejected"

UAExpert Successful Connection

Browse this node to
see the OPCUA tags
for the GEMTool

After reconnecting to the server the
client has successfully connected

OPCUA Client Test

Two significant VIDs
have been added to the
UAExpert client view,
the OnlineOfflineState
and LocalRemoteState.

One of the more important client
connections for a tool interface are
to the VIDs in the OCPUA Server.

OnlineOfflineState and LocalRemoteState need to
both be boolean true for the fab Host to connect to the
tool as Online-Remote. The tool should start out with
both false for safety reasons. These should be
connected to your HMI client as buttons or switches
for operator control.

OPCUA Client Test

wafercount has been
added and its value
changed to 15 in the
OPCUA client.

Change a value in the OPCUA
Client and test that this VID is
changed in the SECS/GEM
interface.

Test the WaferCount Value in the Host

The S1F4 received from the
GEMTool with the value "15" which
was set in the OPCUA Client

Select the S1F3
message in the
GEMHost and change
the SVID to 1510 for
the Wafer Count

Press the Send
Message button and
see the S1F3 Sent

Test Sending a Message From the Client

To prepare to send the reply
message to the Host, add the
"sendMessage" tag from the
hostcommandreply message so
that it is ready to use

Test Sending a Message From the Client

Press the Send Message Button
to send the command to the tool

Send a Host command from the
GEMHost to the GEMTool so
that the tool may send a
response message using the
OPCUA sendMessage tag

Select the Host
Command "STOP"
message for testing

Host Command was
sent to the GEMTool Quickly send the reply

from the OPCUA Client
before the T3 timeout

Test Sending a Message From the Client

Send the S2F42 Host Command
Reply by setting the
sendMessage value to boolean
true in the OPCUA Client.

Test Sending a Message From the Client

Host Command reply
was received from the
GEMTool

Notes on OPCUA Servers:
JSON List Formats

List elements are JSON formatted, such as { "values": [] }

For example, the recipe list for an S7F20 might look like:

 { "values": ["recipe1","recipe2", "recipe3", "recipe4"] }

There are more things you can do with the JSON format for
the lists, including making lists of lists and specifying the
SECS format for the data in the list.

Notes on OPCUA Servers:
JSON List Formats

If a specific type is required, it can be specified if needed. For
example for the recipe list, the data is ASCII, type 20:

 { "values": ["recipe1","recipe2", "recipe3", "recipe4"], type:"20" }

type is defined by the SECS Standard:

00 - List
10 - Binary (can be an array)
11 - Boolean
20 - String
30 - 8 byte floating point
34 - 4 byte floating point

40, 41, 42, 44 - 8, 1,2,4 byte signed integers
50, 51, 52, 54 - 4 byte signed integer

Notes on OPCUA Servers:
JSON List Formats

Each element of the array can have a different type in this format
(this might be useful in some message replies with different data
types):

 {"values":[

 {"value":"1.2", "type":"34"},

 {"value":"Test", "type":"20"},

 {"value":[5,6,7,8], "type":"10"},

 {"value":1, "type":"10"}

]}

Notes on Tool OPCUA Servers:
Triggering Events with DVVALs

Events can be triggered with a list of DVVALS, so if you need to do
this you can define the list, then use this as the trigger input to the
CEID. If you are using DVVALs in your project you would associate
the DVVALS when you define your CEID.

DVVALS as a JSON String sent to the trigger of a CEID:

{ "values":[

 { dvid:WaferCount, dvval:15 },

 { dvid:23456, dvval:\"Hello World\" }

] }

You can specify any VID with either its name (for example
WaferCount), or its vid number (for example 23456) as the above
example demonstrates.

Notes on OPCUA Servers:
Host Commands

If you publish the whole host command, the structure is a list (with
the host command), then the list elements for the parameters for the
command.

It may look something like:

 { "values": [{ "value":"PP-SELECT", type:"20 } } { "values":
[{ "values": [LOTID] , type:"20 } { "values":
[{ "value":"CHAMBER", type:"20 } } { "value":"1", type:"51 } }] }
{ "values": [PPID] , type:"20 }] }] }

Notes on OPCUA Servers:
vibopc.properties

The vibopc.properties file has some settings which control some
aspects of the OPCUA runtime. This file is located in the OPCUA
deployment directory.

VIBOPC.NoMethodSupport

This defaults to false. If set to true opcua methods are generated for
operations such as sending messages. Some OPCUA clients do not
support methods.

VIBOPC.UnderscoreCreatePaths

This defaults to true. This allows you to define vid names with
underscores which will generate a tree structure for the vids. For
example a vid "robot_xaxis" will generate a tag structure
/toolname/vids/robot/xaxis".

That’s it.

Now you’re ready to program your OPCUA Client application to
complete integration of the SECS/GEM interface. You should update
your tool data values (SVIDs) as they change and can trigger alarms
(ALIDs) and events (CEIDs) and send and receive messages as
needed. You may need to handle host commands and send the host
command replies from your OPCUA client using the sendMessage
tags. More host command message handling can be added, and
also there are options for manually handling recipe messages, or
you can set up simple automatic recipe handling.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

